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Abstract

The impact of cryptic relatedness (CR) on genomic association studies is well

studied and known to inflate false-positive rates as reported by several groups.

In contrast, conventional epidemiological studies for environmental risks, the

confounding effect of CR is still uninvestigated. In this study, we investigated

the confounding effect of unadjusted CR among a rural cohort in the relation-

ship between environmental risk factors (body mass index, smoking status,

alcohol consumption) and systolic blood pressure. We applied the methods of

population-based whole-genome association studies for the analysis of the gen-

ome-wide single nucleotide polymorphism data in 1622 subjects, and detected

20.2% CR in this cohort population. In the case of the sample size, approxi-

mately 1000, the ratio of CR to the population was 20.2%, the population prev-

alence 25%, the prevalence in the CR 26%, heritability for liability 14.3% and

prevalence in the subpopulation without CR 26%, the difference of estimated

regression coefficient between samples with and without CR was not significant

(P-value = 0.55). On the other hand, in another case with approximately >20%
heritability for liability, we showed that confounding due to CR biased the esti-

mation of exposure effects.

Introduction

Cryptic relatedness (CR) is well known as a confounding

factor in genome wide association study (GWAS) (Yu

et al. 2006; Kang et al. 2008; Price et al. 2010), which

inflates the false-positive rate. Voight and Pritchard

(2005) developed a formal model of CR and studied its

impact on genomic case–control association studies. They
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showed that the degree of confounding due to CR would

usually be negligible. However, in contrast, they also

reported on studies with sampling biases toward collecting

relatives may indeed suffer from excessive rates of false pos-

itives. Typically, epidemiological designs in which individu-

als are ascertained nonrandomly from a closed population,

the effect of the influence of close relatives might not be

negligible. It is therefore important to correct or account

for the confounding effect of CR in epidemiological cohort

studies that have collected data from a limited or small-

sized sample. However, the knowledge of the confounding

effect of CR in epidemiological association studies is still

unknown. Here, we examined the confounding effect of CR

in the relationship between systolic blood pressure (SBP)

and several environmental risk factors (body mass index

[BMI], smoking status [daily smoker vs. nonsmoking], and

alcohol consumption [drinking vs. abstention]).

It is also well known that being overweight and obese

increases the risk of high blood pressure (Kannel 1967;

World Health Organization 2000). However, interpreting

the blood pressure–BMI relationship is further compli-

cated by data from other studies, in which there appears

to be no correlation between these variables (Roche and

Siervogel 1991; Spiegelman et al. 1992; Bunker et al.

1995; Gallagher et al. 1996). In this article, we examined

whether the confounding effect of CR might involve in

the relationship between blood pressure and BMI. Addi-

tional goals of the study were to assess the confounding

effect of CR in any potential relationship between blood

pressure and the risk of other environmental factors; for

example, smoking and alcohol consumption. There are

several studies that examined the relationship between

alcohol consumption or smoking and blood pressure in

a Japanese population (Kiyohara et al. 1995; Minami

et al. 2002; Ohmori et al. 2002). Ohira et al. (2009)

looked into the effect of habitual alcohol intake on

ambulatory blood pressure among Japanese men, which

was associated with increased BP in the morning. Mi-

nami et al.(1999) studied the effects of smoking cessation

on blood pressure in habitual smokers. However, there

were no studies which examined the confounding effect

of CR in the relationship between blood pressure and

the risk of environmental factors. We aim to address the

question of whether CR is likely to be a serious issue for

inferring epidemiological relationship between these fac-

tors using the cohort study of Takahata residents. First,

using the techniques to detect and correct for unrecog-

nized population structure in GWAS, we examined how

CR was presented in the sampling. Next, we tested the

assumption of parallel regressions to examine whether its

confounding effect as a covariate affected on environ-

mental risk factors in difference setting (sample size,

ratio of CR to the population, prevalence in CR, the

population prevalence). Then, we applied multiple

regression analysis to these data with and without CR in

order to examine the differences obtained in estimating

the regression coefficient.

Methods

Analysis of real data

We used the genome-wide 657,366 single nucleotide poly-

morphism (SNP) data and SBP as a phenotype in the

cohort study of Takahata. We selected BMI, variables for

smoking status (1: nonsmoking vs. 2: daily smoker), and

alcohol consumption (1: abstention vs. 2: drinking) as

environmental risk factors, and gender (1: male; 2:

female) and age as covariates. Weight, height, and SBP

were measured and standardized in the Takahata cohort

design. We examined the relationship between individuals

genetic background by the PLINK (Purcell et al. 2007)

and the EIGENSTRAT methods (Price et al. 2006). We

detected relationships between subjects using identity by

descent (IBD) probability as a measurement.

Multiple regression analyses

We sampled our cohort population in a difference setting;

sample size (approximately 1000, 400, or 500), the ratio of

CR to the population (approximately 20%, 40%, or 50%),

the prevalence in the subpopulation without CR (26%,

50%, or 76%), the prevalence in CR (26% fixed), the pop-

ulation prevalence (25%, 40%, or 50%), and heritability

for liability (approximately 14%, 22%, or 32%) in our

cohort population. Here, we estimated heritability for lia-

bility using the formula {(xp � xq)/ap}/q, where q denotes

the expected proportion of alleles shared IBD (i.e.,

q = 2�R, where R denotes the degree of relationship), xp
denotes the difference between mean value in the subpopu-

lation without CR and threshold, xq denotes the difference

between mean value in the subpopulation without CR and

mean value in CR, and ap denotes the difference between

population mean and mean value in the group of affected

individuals (Yasuda 2007). In our context, q can be defined

as the sum of expected proportion of allele shared IBD for

all of the degree of relationship in our detected CR (i.e.,

R = 0, 1, 2). First, we tested the assumption of parallel

regressions to examine whether the confounding effect of

CR as a covariate affected on environmental risk factors;

that is, the following test was performed,

yk ¼ ak þ bnkxnðk ¼ 1; 2; n ¼ 1; 2. . .; 6Þ

Null hypothesis: bn1 = bn2, alternative hypothesis:

bn1 6¼ bn2,
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where k is the number of population (i.e., population

with and without CR), and n is the number of indepen-

dent variables and covariates. Then, we applied multiple

regression analysis to these data with and without CR in

order to examine the differences obtained in estimating

the regression coefficient.

Cohort description

We performed an analysis of the data collected within a

closed, small prospective study, concerned with various

risk factors for common diseases.

Subject recruitment

The Takahata cohort was established for a baseline survey

in a small rural town, Takahata in Yamagata Prefecture

from 2006 to 2008. The total population size has been

constant, approximately 25,000 throughout this period.

The Takahata cohort has become part of our large geno-

mic cohort initiative, the Yamagata cohort, which is now

ongoing in the urban prefectural capital, Yamagata City,

having approximately 250,000 residents. We used geno-

mic DNAs from 1622 individuals who completed the

questionnaire for environmental exposures and informed

consent for our modern prospective genomic cohort

study. This cohort study was performed under the

approval by the Committee on Ethics at Yamagata Uni-

versity and all other institutions involved.

Genotyping

Using genomic DNAs from the Takahata population, we

carried out genotyping for 657,366 SNPs using the Infini-

um Assay with Human660W-Quad BeadChip (Illumina,

San Diego, CA) according to the standard procedure pro-

vided by Illumina.

Results

Figure 1 shows the relationship between total 1622 sub-

jects with an IBD probability with regard to an identity

by distance. First step, we removed individuals for low

genotyping (P � 0.05) from total 1622 sample using the

PLINK method. By the PLINK and the EIGENSTRAT

methods, we detected a relationship between subjects with

an IBD probability >1/4 as a CR of 326 subjects (i.e.,

monozygotic twins, dizygotic twins, full-sibs, parent-off-

spring, half-siblings, grandparent, grandchild, aunt/uncle,

and niece/nephew) in the sample of 1617 subjects. Fig-

ure 2 shows the relationship between 1291 subjects with

an IBD probability with regard to an identity by distance

after removed a CR of 326 subjects. Next, we removed

subjects medically treated for blood pressure from sam-

ples with and without CR, respectively. Using the sample

with and without CR, the sample sizes were 1039 and 829

individuals, respectively. We analyzed the data as

described above. In this case, the heritability for liability

was 14.3%. In the multiple regression analysis, the regres-

sion model found from the sampling data with CR was as

follows:
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Figure 1. Plot of the relationship between total 1622 subjects with

an identity by descent (IBD) probability with regard to an identity by

state (IBS) distance; y-axis and x-axis describe IBD probability and IBS

distance, respectively.
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Figure 2. Plot of the relationship between 1291 subjects with an

identity by descent (IBD) probability with regard to an identity by state

(IBS) distance after which is removed a cryptic relatedness of 326

subjects with an IBD probability >1/4 (i.e., monozygotic twins,

dizygotic twins, full-sibs, parent-offspring, half-siblings, grandparent,

grandchild, aunt/uncle, and niece/nephew); y-axis and x-axis describe

IBD probability and IBS distance, respectively.
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Systolic ¼ 82:52� þ 1:31� � BMI � 0:80� Alcohol
� 0:66� Smoking þ 0:38� � Age
� 0:31�Gender (1)

where “Systolic” denotes systolic blood pressure and

* indicates significant, P-values <0.05. Note that adjusted

R-squared for equation (1) was 0.14.

The regression model found from the sampling data

without CR was as follows:

Systolic ¼ 77:11� þ 1:36� � BMI � 0:42� Alcohol
� 0:02� Smoking þ 0:41� � Age � 2:46�

� Gender ð2Þ
Note that adjusted R-squared for equation (2) was 0.15.

Compared with equations (1) and (2), the results

showed that the presence of CR is apparently not affected

by estimating regression coefficient in regression modeling

(Table 1). We tested the assumption of parallel regres-

sions for equations (1) and (2). The difference between

equations (1) and (2) was not significant (F-value = 0.35,

P-value = 0.55).

Furthermore, as described in Methods, we analyzed

under the following difference setting, conditional on the

fixed prevalence in CR of 26%. The regression model

found from the sampling data in the sample size of 400,

the ratio of CR to the population 52.5%, prevalence in

the population 40%, prevalence in the subpopulation

without CR 55%, prevalence in CR 26%, the heritability

for liability 24.2% was as follows:

Systolic ¼ 141:04� � 0:12� BMI � 6:11� � Alcohol
þ 5:34� � Smoking � 0:04� Age � 1:24
� Gender (3)

Note that adjusted R-squared for equation (3) was 0.25.

In contrast, the regression model found from the sam-

pling without CR (sample size 190) was as follows:

Systolic ¼ 145:97� þ 0:04� BMI þ 1:28� � Alcohol
� 0:39� Smoking � 0:13� � Age � 0:92�

� Gender ð4Þ

Note that adjusted R-squared for equation (4) was 0.16.

Compared with equations (3) and (4), the results showed

that the presence of CR is apparently affected by estimat-

ing regression coefficient in regression modeling

(Table 2). By testing the assumption of parallel regres-

sions for equations (3) and (4), the difference between

equations (3) and (4) was significant (F-value = 41.83, P-

value = 2.103e�10).

The regression model found based on the sampling data

in the sample size of 400, the ratio of CR to the popula-

tion 52.5%, prevalence in the population 50%, prevalence

in the subpopulation without CR 76.3%, prevalence in CR

26%, the heritability for liability 32.4% was as follows:

Systolic ¼ 135:37� þ 0:07� BMI � 12:34� � Alcohol
þ 4:15� Smoking þ 0:17� Age � 1:13
� Gender ð5Þ

Note that adjusted R-squared for equation (5) was 0.24.

In contrast, the regression model found from the sam-

pling without CR (sample size 190) was as follows:

Systolic ¼ 136:68� þ 0:06� BMI � 7:75� � Alcohol
� 2:32� Smoking þ 0:27� � Age þ 0:11�

� Gender ð6Þ

Note that adjusted R-squared for equation (6) was 0.42.

Compared with equations (5) and (6), the results showed

that the presence of CR is apparently affected by estimat-

ing regression coefficient in regression modeling

(Table 3). By testing the assumption of parallel regres-

sions for equations (5) and (6), the difference between

equations (5) and (6) was significant (F-value = 39.74, P-

value = 5.720e�10).

The regression model found from the sampling data in

the sample size of 500, the ratio of CR to the population

42%, prevalence in the population 40%, prevalence in the

Table 1. Results of the regression coefficients between systolic blood

pressure and environmental risk factors in the sample with and with-

out cryptic relatedness (CR): sample size 1039, ratio of CR to the pop-

ulation 20.2%, population prevalence 25%, heritability for liability

14.3%, prevalence in the subpopulation without CR 26%, prevalence

in CR 26%.

Estimated

Standard

error t-value Pr(>|t|)

Intercept

Sample with CR1 82.52 5.15 16.03 <2e�16

Sample without CR2 77.11 5.49 14.06 <2e�16

BMI

Sample with CR 1.31 0.14 9.30 <2e�16

Sample without CR 1.36 0.16 8.34 3.23e�16

Alcohol consumption

Sample with CR �0.80 1.51 �0.53 0.60

Sample without CR �0.42 1.61 �0.26 0.79

Smoking status

Sample with CR �0.66 0.71 �0.93 0.35

Sample without CR �0.02 1.05 �0.02 0.98

Age

Sample with CR 0.38 0.07 5.43 6.86e�08

Sample without CR 0.41 0.05 7.99 4.62e�15

Gender

Sample with CR �3.09 1.04 �2.97 0.003

Sample without CR �2.46 1.01 �2.44 0.01

1Size of sample with CR was 1039 subjects. From the sampling data

with CR, equation (1) in Results were found. Adjusted R-

squared = 0.14.
2Size of sample without CR was 829 subjects. From the sampling data

without CR, equation (2) in Results were found. Adjusted R-

squared = 0.15.
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subpopulation without CR 50%, prevalence in CR 26%,

the heritability for liability 22.1% was as follows:

Systolic ¼ 137:18� þ 0:04� BMI � 9:47� � Alcohol
þ 3:47� � Smoking þ 0:10� Age � 0:95
� Gender (7)

Note that adjusted R-squared for equation (7) was 0.19.

In contrast, the regression model found from the sam-

pling without CR (sample size 290) was as follows:

Systolic ¼ 141:55� þ 0:09� BMI � 5:34� � Alcohol
� 2:30� Smoking þ 0:11� � Age þ 1:10
� Gender (8)

Note that adjusted R-squared for equation (8) was 0.16.

Compared with equations (7) and (8), the results showed

that the presence of CR is apparently affected by estimat-

ing regression coefficient in regression modeling

(Table 4). By testing the assumption of parallel regres-

sions for equations (7) and (8), the difference between

equations (7) and (8) was significant (F-value = 24.96

P-value = 7.219e�07).

The regression model found from the sampling data in

the sample size of 500, the ratio of CR to the population

42%, prevalence in the population 50%, prevalence in the

subpopulation without CR 67.2%, prevalence in CR 26%,

the heritability for liability 31.7% was as follows:

Systolic ¼ 130:15� þ 0:17� BMI � 16:61� � Alcohol
� 2:58� � Smoking þ 0:39� � Age � 1:44
� Gender ð9Þ

Note that size of sample with CR was 500 subjects and

adjusted R-squared for equation (9) was 0.21. In contrast,

the regression model found from the sampling without

CR (sample size 290) was as follows:

Systolic ¼ 128:16� þ 0:22� BMI � 8:11� � Alcohol
� 2:87� Smoking þ 0:42� � Age � 1:29
� Gender ð10Þ

Note that adjusted R-squared for equation (10) was 0.24.

Compared with equations (9) and (10), the results

showed that the presence of CR is apparently affected by

estimating regression coefficient in regression modeling

(Table 5). By testing the assumption of parallel regres-

Table 2. Results of the regression coefficients between systolic blood

pressure and environmental risk factors in the sample with and with-

out cryptic relatedness (CR): sample size 400, ratio of CR to the popu-

lation 52.5%, population prevalence 40%, heritability for liability

24.2%, prevalence in the subpopulation without CR 55%, prevalence

in CR 26%.

Estimated

Standard

error t-value Pr(>|t|)

Intercept

Sample with CR1 141.04 5.52 25.56 <2e�16

Sample without CR2 145.97 1.67 87.40 <2e�16

BMI

Sample with CR �0.12 0.15 �0.76 0.45

Sample without CR 0.04 0.05 0.79 0.43

Alcohol consumption

Sample with CR �6.11 1.81 �3.37 0.0008

Sample without CR 1.28 0.56 2.30 0.022

Smoking status

Sample with CR 5.34 0.71 7.57 2.69e�13

Sample without CR �0.39 0.25 �1.59 0.11

Age

Sample with CR �0.040 0.082 �0.48 0.63

Sample without CR �0.13 0.02 �5.47 1.44e�07

Gender

Sample with CR �1.24 1.13 �1.10 0.27

Sample without CR �0.92 0.32 �2.86 0.004

1Size of sample with CR was 400 subjects. From the sampling data

with CR, equation (3) in Results were found. Adjusted

R-squared = 0.25.
2Size of sample without CR was 190 subjects. From the sampling data

without CR, equation (4) in Results were found. Adjusted

R-squared = 0.16.

Table 3. Results of the regression coefficients between systolic blood

pressure and environmental risk factors in the sample with and with-

out cryptic relatedness (CR): sample size 400, ratio of CR to the popu-

lation 52.5%, population prevalence 50%, heritability for liability

14.3%, prevalence in the subpopulation without CR 76.3%, preva-

lence in CR 26%.

Estimated

Standard

error t-value Pr(>|t|)

Intercept

Sample with CR1 135.37 5.77 23.47 <2e�16

Sample without CR2 136.68 2.09 65.34 <2e�16

BMI

Sample with CR 0.07 0.16 0.46 0.64

Sample without CR 0.06 0.05 1.11 0.27

Alcohol consumption

Sample with CR �12.34 2.00 �6.16 1.77e�09

Sample without CR �7.75 0.81 �9.54 <2e�16

Smoking status

Sample with CR 4.15 0.74 5.62 3.60e�08

Sample without CR �2.32 0.32 �7.23 1.24e�11

Age

Sample with CR 0.17 0.09 1.89 0.06

Sample without CR 0.27 0.03 7.84 3.56e�13

Gender

Sample with CR �1.13 1.18 �0.95 0.34

Sample without CR 0.11 0.41 0.27 0.79

1Size of sample with CR was 400 subjects. From the sampling data

with CR, equation (5) in Results were found. Adjusted

R-squared = 0.24.
2Size of sample without CR was 190 subjects. From the sampling data

without CR, equation (6) in Results were found. Adjusted

R-squared = 0.42.
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sions for equations (9) and (10), the difference between

equations (9) and (10) was significant (F-value = 35.46

P-value = 3.915e�09).

Discussion

We detected 20.2 % CR of the sample in Takahata cohort

study. In our multiple regression models using sample size

(N = 1000), there is no significant difference of regression

coefficients in the sample with and without CR. In con-

trast, in the case that the population prevalence of SBP

40–50%, the prevalence in the subpopulation without CR

50–76%, the ratio of CR to the population 42–52%, sam-

ple size 400–500 and the heritability for liability 22–32%,

the confounding effect of CR in the relationship between

SBP and environmental risk factors is not negligible. In

general, confounding is a major concern in causal studies

because it results in biased estimation of exposure effects.

In this respect, our study showed that confounding due to

CR biased the estimation of exposure effects in the case of

the heritability for liability by approximately >20%. On

the other hand, although the number of predictors in the

models were included enough (i.e., using independent

variables for BMI, alcohol consumption, and smoking sta-

tus, which were significantly correlated with blood pres-

sure in several research groups (Kannel 1967; Minami

et al. 1999; World Health Organization 2000; Ohira et al.

2009), adjusted R-square values of our regression equation

models were not high. A possible explanation of low

adjusted R-square values for our models is that other

independent variables due to genetic factors might con-

tribute to the SBP phenotype. Genetic factors that confer

susceptibility to hypertension were identified in several

populations (Jeunemaitre et al. 1992; Hata et al. 1994; Lif-

ton 1996; Cusi et al. 1997). Theoretically, Fisher (1918)

indicated that the impact of the effect on the phenotype

was evaluated by comparing variances. Falconer and Mac-

kay (1996) showed how the phenotypic variance can be

partitioned into causal components of variance using the

equation VP = VG + VE. In this sense, VP is the total phe-

notypic variance, VG is the total genetic variance consis-

tent with the additive variance (VA), the dominance

variance (VD), the interaction variance (VI) and VE as the

Table 4. Results of the regression coefficients between systolic blood

pressure and environmental risk factors in the sample with and with-

out cryptic relatedness (CR): sample size 500, ratio of CR to the popu-

lation 42%, population prevalence 40%, heritability for liability

22.1%, prevalence in the subpopulation without CR 50%, prevalence

in CR 26%.

Estimated

Standard

error t-value Pr(>|t|)

Intercept

Sample with CR1 137.18 4.91 27.92 <2e�16

Sample without CR2 141.55 2.99 47.26 <2e�16

BMI

Sample with CR 0.04 0.14 0.29 0.77

Sample without CR 0.09 0.08 1.11 0.27

Alcohol consumption

Sample with CR �9.47 1.59 �5.94 5.47e�09

Sample without CR �5.34 1.00 �5.35 4.26e�07

Smoking status

Sample with CR 3.47 0.64 5.45 8.10e�08

Sample without CR �2.30 0.44 �5.18 4.26e�11

Age

Sample with CR 0.10 0.07 1.34 0.18

Sample without CR 0.11 0.05 2.39 0.018

Gender

Sample with CR �0.95 1.10 �0.94 0.35

Sample without vCR �1.10 0.60 �1.83 0.07

1Size of sample with CR was 500 subjects. From the sampling data

with CR, equation (7) in Results were found. Adjusted

R-squared = 0.19.
2Size of sample without CR was 290 subjects. From the sampling data

without CR, equation (8) in Results were found. Adjusted

R-squared = 0.16.

Table 5. Results of the regression coefficients between systolic blood

pressure and environmental risk factors in the sample with and with-

out cryptic relatedness (CR): sample size 500, ratio of CR to the popu-

lation 42%, population prevalence 50%, heritability for liability

31.7%, prevalence in the subpopulation without CR 67.2%, preva-

lence in CR 26%.

Estimated

Standard

error t-value Pr(>|t|)

Intercept

Sample with CR1 130.15 5.51 23.62 <2e�16

Sample without CR2 128.16 3.92 32.73 <2e�16

BMI

Sample with CR 0.17 0.15 1.13 0.26

Sample without CR 0.22 0.10 2.13 0.03

Alcohol consumption

Sample with CR �16.61 1.67 �9.95 <2e�16

Sample without CR �8.11 1.24 �6.53 2.99e�10

Smoking status

Sample with CR 2.58 0.71 3.63 0.0003

Sample without CR �2.87 0.65 �4.40 1.53e�05

Age

Sample with CR 0.39 0.08 4.91 1.21e�06

Sample without CR 0.42 0.05 7.72 1.99e�13

Gender

Sample with CR �1.44 1.09 �1.33 0.19

Sample without CR �1.29 0.72 �1.79 0.08

1Size of sample with CR was 500 subjects. From the sampling data

with CR, equation (9) in Results were found. Adjusted

R-squared = 0.21.
2Size of sample without CR was 290 subjects. From the sampling data

without CR, equation (10) in Results were found. Adjusted

R-squared = 0.24.
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environmental variance consistent with the special envi-

ronmental variance (VEs) that refers to the within individ-

ual variance arising from localized circumstances, and

general environmental variance VEg refers to the environ-

mental variance contributing to between-individual com-

ponent in origin. Note that the ratio VG = VP is the

heritability of the character. Moreover, Falconer and Mac-

kay (1996) revealed the existence of two coefficients for

genetic variances; one is the coefficient r of the additive

variance (VA) which called the coefficient of relationship

between the relatives in question, and the other is the

coefficient u of the dominance variance (VD) which repre-

sents the probability of the relatives having the same geno-

type through IBD. Using these two coefficients, the total

genetic variance is given by VG = rVA + uVD + 2covAD,

where covAD is the covariance of breeding values with

dominance deviations (Falconer and Mackay 1996).

According to this mathematical model, it is easily under-

stood how factors associated with genetically close relatives

in a sample of ostensibly unrelated individuals contribute

to the effect of phenotype; that is, the phenotype is com-

posed of both environmental and genetic elements that

contribute to the relationship between relatives. Thus,

some of the differences in the estimates of regression coef-

ficients might be because of the adjustment strategies for

concomitant confounding effect of CR. Rotimi et al.

(1999) examined a familial pattern of blood pressure in a

population of Nigerian families and clarified that heritabil-

ity of <50% for both SBP and diastolic blood pressure

(DBP) reinforced the importance of the nonshared famil-

ial environmental effects. Thus, one of the approaches to

select the best model for the response variable using

collected cohort data from a limited or small-sized sample

is that the heritability of the blood pressure phenotype

might be worth considering.

Historically, the most common statistical approach for

dealing with confounding in epidemiology was based on

stratification. Typically, given the importance of confound-

ing in epidemiology, statistical methods recommend the

removal of significantly confounding samples. However,

the resulting removal of samples with confounding factors,

the sample size is reduced. As with another possible

approach, we are now extensively analyzing this issue by a

method incorporating principal components of a large

subset of GWAS SNPs as regression covariates. This

approach does not waste resources; that is we can use the

entire sample. There are some similarities between the

approach by Price et al. (2006) and our method; however,

in contrast we examine principal components of a large

subset of GWAS SNPs to adjust the confounding effect of

CR. On the other hand, they examined them only to adjust

the population structure. Generally, principal components

typically reflect genome-wide factors attributable to the

demographic history of the populations studied (Price

et al. 2006). In this respect, it still remains to be clarified

whether principal components reflect genome-wide factors

attributable to CR. We are now extensively analyzing

under what condition such approach is plausible.

In conclusion, we found a confounding effect of CR in

the relationship between SBP and environmental risk

factors was not negligible. In our study, we showed that

heritability for liability might reflect on the estimation of

regression coefficients between SBP and environmental

risk factors, because they vary with environmental risk

factors that differ across some unsuspected relatedness.

For the genetic case-control studies, test statistics are gen-

erally inflated relative to the expectation under the associ-

ation of an independent sample and without genetic

association to the disease. These false positives often are

attributed to CR (Devlin and Roeder 1999). Thus, more

or less in any other epidemiological investigations that

were performed previously, a true effect might be hidden

due to confounding arising from CR. In our study, we

presented a simply modeling to illustrate the effect of CR

on the estimation of coefficients. The size of the CR would

have a big impact on the precision of the resulting esti-

mates of coefficients. We are now extensively analyzing

this issue in different settings. Various statistical methods

have been proposed to take into account confounding fac-

tors such as linear mixed-effect models (Demidenko 2004)

or methods that adjust data based on a principal compo-

nents analysis (Price et al. 2006). Sturmer et al. (2005)

proposed a method of adjusting for multiple unmeasured

confounders in a cohort study. The amount of residual

confounding due to unmeasured and poorly measured co-

variates was important enough to qualitatively change the

association between NSAID (nonsteroidal anti-inflamma-

tory drug) use and mortality (Sturmer et al. 2005). After

data collection, using these techniques in an epidemiologi-

cal association study, it might be important to adjust the

cryptic relative pairs based on genetic data in the relation-

ship between environmental risk factors and phenotypes.
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